Stable classification of 4‐manifolds with 3‐manifold fundamental groups

We study closed, oriented 4‐manifolds whose fundamental group is that of a closed, oriented, aspherical 3‐manifold. We show that two such 4‐manifolds are stably diffeomorphic if and only if they have the same w2‐type and their equivariant intersection forms are stably isometric. We also find explici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2017-09, Vol.10 (3), p.827-881
Hauptverfasser: Kasprowski, Daniel, Land, Markus, Powell, Mark, Teichner, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study closed, oriented 4‐manifolds whose fundamental group is that of a closed, oriented, aspherical 3‐manifold. We show that two such 4‐manifolds are stably diffeomorphic if and only if they have the same w2‐type and their equivariant intersection forms are stably isometric. We also find explicit algebraic invariants that determine the stable classification for spin manifolds in this class.
ISSN:1753-8416
1753-8424
DOI:10.1112/topo.12025