Angled decompositions of arborescent link complements

This paper describes a way to subdivide a 3-manifold into angled blocks, namely polyhedral pieces that need not be simply connected. When the individual blocks carry dihedral angles that fit together in a consistent fashion, we prove that a manifold constructed from these blocks must be hyperbolic....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2009-03, Vol.98 (2), p.325-364
Hauptverfasser: Futer, David, Guéritaud, François
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a way to subdivide a 3-manifold into angled blocks, namely polyhedral pieces that need not be simply connected. When the individual blocks carry dihedral angles that fit together in a consistent fashion, we prove that a manifold constructed from these blocks must be hyperbolic. The main application is a new proof of a classical, unpublished theorem of Bonahon and Siebenmann: that all arborescent links, except for three simple families of exceptions, have hyperbolic complements.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms/pdn033