Minimal surfaces with symmetries
Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conf...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2024-03, Vol.128 (3), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Proceedings of the London Mathematical Society |
container_volume | 128 |
creator | Forstnerič, Franc |
description | Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations. |
doi_str_mv | 10.1112/plms.12590 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2680-9aaf7bc6299f6c31475129a810c391f3d4aadd116e51d335e57452acc6778a3a3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEc3_oKuhYz35tVmKYMv6KCggrtwTROstDokI0P_vR3r2tXdfPec8zF2jrBERHG56Ye8RKEtHLAClQEulHo9ZAWAUNwg6mN2kvMHABgpdcHKdffZDdSX-TtF8iGXu277XuZxGMI2dSGfsqNIfQ5nf3fBXm6un1d3vHm4vV9dNdwLUwO3RLF680ZYG42XqCqNwlKN4KXFKFtF1LaIJmhsp-agK6UFeW-qqiZJcsEu5lyfvnJOIbpNmoal0SG4vZvbu7lftwnGGd51fRj_Id1js36af34A1SFQsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimal surfaces with symmetries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Forstnerič, Franc</creator><creatorcontrib>Forstnerič, Franc</creatorcontrib><description>Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12590</identifier><language>eng</language><ispartof>Proceedings of the London Mathematical Society, 2024-03, Vol.128 (3), p.n/a</ispartof><rights>2024 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2680-9aaf7bc6299f6c31475129a810c391f3d4aadd116e51d335e57452acc6778a3a3</cites><orcidid>0000-0002-7975-0212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12590$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12590$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Forstnerič, Franc</creatorcontrib><title>Minimal surfaces with symmetries</title><title>Proceedings of the London Mathematical Society</title><description>Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9j0tLxDAUhYMoWEc3_oKuhYz35tVmKYMv6KCggrtwTROstDokI0P_vR3r2tXdfPec8zF2jrBERHG56Ye8RKEtHLAClQEulHo9ZAWAUNwg6mN2kvMHABgpdcHKdffZDdSX-TtF8iGXu277XuZxGMI2dSGfsqNIfQ5nf3fBXm6un1d3vHm4vV9dNdwLUwO3RLF680ZYG42XqCqNwlKN4KXFKFtF1LaIJmhsp-agK6UFeW-qqiZJcsEu5lyfvnJOIbpNmoal0SG4vZvbu7lftwnGGd51fRj_Id1js36af34A1SFQsg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Forstnerič, Franc</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7975-0212</orcidid></search><sort><creationdate>202403</creationdate><title>Minimal surfaces with symmetries</title><author>Forstnerič, Franc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2680-9aaf7bc6299f6c31475129a810c391f3d4aadd116e51d335e57452acc6778a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forstnerič, Franc</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forstnerič, Franc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal surfaces with symmetries</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2024-03</date><risdate>2024</risdate><volume>128</volume><issue>3</issue><epage>n/a</epage><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations.</abstract><doi>10.1112/plms.12590</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7975-0212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2024-03, Vol.128 (3), p.n/a |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_crossref_primary_10_1112_plms_12590 |
source | Wiley Online Library Journals Frontfile Complete |
title | Minimal surfaces with symmetries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20surfaces%20with%20symmetries&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Forstneri%C4%8D,%20Franc&rft.date=2024-03&rft.volume=128&rft.issue=3&rft.epage=n/a&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12590&rft_dat=%3Cwiley_cross%3EPLMS12590%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |