Minimal surfaces with symmetries
Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conf...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2024-03, Vol.128 (3), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12590 |