Minimal surfaces with symmetries

Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2024-03, Vol.128 (3), p.n/a
1. Verfasser: Forstnerič, Franc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G$G$ be a finite group acting on a connected open Riemann surface X$X$ by holomorphic automorphisms and acting on a Euclidean space Rn$\mathbb {R}^n$ (n⩾3)$(n\geqslant 3)$ by orthogonal transformations. We identify a necessary and sufficient condition for the existence of a G$G$‐equivariant conformal minimal immersion F:X→Rn$F:X\rightarrow \mathbb {R}^n$. We show in particular that such a map F$F$ always exists if G$G$ acts without fixed points on X$X$. Furthermore, every finite group G$G$ arises in this way for some open Riemann surface and n=2|G|$n=2|G|$. We obtain an analogous result for minimal surfaces having complete ends with finite total Gaussian curvature, and for discrete groups acting on X$X$ properly discontinuously and acting on Rn$\mathbb {R}^n$ by rigid transformations.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms.12590