L‐theory of C∗$C^$‐algebras
We establish a formula for the L‐theory spectrum of real ‐algebras from which we deduce a presentation of the L‐groups in terms of the topological K‐groups, extending all previously known results of this kind. Along the way, we extend the integral comparison map obtained in previous work by the firs...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2023-11, Vol.127 (5), p.1451-1506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a formula for the L‐theory spectrum of real ‐algebras from which we deduce a presentation of the L‐groups in terms of the topological K‐groups, extending all previously known results of this kind. Along the way, we extend the integral comparison map obtained in previous work by the first two authors to real ‐algebras and interpret it using topological Grothendieck–Witt theory. Finally, we use our results to give an integral comparison between the Baum–Connes conjecture and the L‐theoretic Farrell–Jones conjecture, and discuss our comparison map in terms of the signature operator on oriented manifolds. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12564 |