Local constancy of pro‐unipotent Kummer maps
It is a theorem of Kim–Tamagawa that the Qℓ${\mathbb {Q}}_\ell$‐pro‐unipotent Kummer map associated to a smooth projective curve Y$Y$ over a finite extension of Qp${\mathbb {Q}}_p$ is locally constant when ℓ≠p$\ell \ne p$. This paper establishes two generalisations of this result. First, we extend t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2023-09, Vol.127 (3), p.836-888 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a theorem of Kim–Tamagawa that the Qℓ${\mathbb {Q}}_\ell$‐pro‐unipotent Kummer map associated to a smooth projective curve Y$Y$ over a finite extension of Qp${\mathbb {Q}}_p$ is locally constant when ℓ≠p$\ell \ne p$. This paper establishes two generalisations of this result. First, we extend the Kim–Tamagawa theorem to the case that Y$Y$ is a smooth variety of any dimension. Second, we formulate and prove the analogue of the Kim–Tamagawa theorem in the case ℓ=p$\ell =p$, again in arbitrary dimension. In the course of proving the latter, we give a proof of an étale–de Rham comparison theorem for pro‐unipotent fundamental groupoids using methods of Scholze and Diao–Lan–Liu–Zhu. This extends the comparison theorem proved by Vologodsky for certain truncations of the fundamental groupoids. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12554 |