Finite generation of the algebra of type A conformal blocks via birational geometry II: higher genus
We prove finite generation of the algebra of type A conformal blocks over arbitrary stable curves of any genus. As an application, we construct a flat family of irreducible normal projective varieties over the moduli stack of stable pointed curves, whose fiber over a smooth curve is a moduli space o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2020-02, Vol.120 (2), p.242-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove finite generation of the algebra of type A conformal blocks over arbitrary stable curves of any genus. As an application, we construct a flat family of irreducible normal projective varieties over the moduli stack of stable pointed curves, whose fiber over a smooth curve is a moduli space of semistable parabolic bundles. This generalizes a construction of a degeneration of the moduli space of vector bundles presented in a recent work of Belkale and Gibney. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12296 |