Finite generation of the algebra of type A conformal blocks via birational geometry II: higher genus

We prove finite generation of the algebra of type A conformal blocks over arbitrary stable curves of any genus. As an application, we construct a flat family of irreducible normal projective varieties over the moduli stack of stable pointed curves, whose fiber over a smooth curve is a moduli space o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2020-02, Vol.120 (2), p.242-264
Hauptverfasser: Moon, Han‐Bom, Yoo, Sang‐Bum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove finite generation of the algebra of type A conformal blocks over arbitrary stable curves of any genus. As an application, we construct a flat family of irreducible normal projective varieties over the moduli stack of stable pointed curves, whose fiber over a smooth curve is a moduli space of semistable parabolic bundles. This generalizes a construction of a degeneration of the moduli space of vector bundles presented in a recent work of Belkale and Gibney.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms.12296