A sharp threshold for spanning 2‐spheres in random 2‐complexes

A Hamiltonian cycle in a graph is a spanning subgraph that is homeomorphic to a circle. With this in mind, it is natural to define a Hamiltonian d‐sphere in a d‐dimensional simplicial complex as a spanning subcomplex that is homeomorphic to a d‐dimensional sphere. We consider the Linial–Meshulam mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2019-09, Vol.119 (3), p.733-780
Hauptverfasser: Luria, Zur, Tessler, Ran J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Hamiltonian cycle in a graph is a spanning subgraph that is homeomorphic to a circle. With this in mind, it is natural to define a Hamiltonian d‐sphere in a d‐dimensional simplicial complex as a spanning subcomplex that is homeomorphic to a d‐dimensional sphere. We consider the Linial–Meshulam model for random simplicial complexes, and prove that there is a sharp threshold at p=e/γn for the appearance of a Hamiltonian 2‐sphere in a random 2‐complex, where γ=44/33.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms.12247