A sharp threshold for spanning 2‐spheres in random 2‐complexes
A Hamiltonian cycle in a graph is a spanning subgraph that is homeomorphic to a circle. With this in mind, it is natural to define a Hamiltonian d‐sphere in a d‐dimensional simplicial complex as a spanning subcomplex that is homeomorphic to a d‐dimensional sphere. We consider the Linial–Meshulam mod...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2019-09, Vol.119 (3), p.733-780 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Hamiltonian cycle in a graph is a spanning subgraph that is homeomorphic to a circle. With this in mind, it is natural to define a Hamiltonian d‐sphere in a d‐dimensional simplicial complex as a spanning subcomplex that is homeomorphic to a d‐dimensional sphere.
We consider the Linial–Meshulam model for random simplicial complexes, and prove that there is a sharp threshold at p=e/γn for the appearance of a Hamiltonian 2‐sphere in a random 2‐complex, where γ=44/33. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12247 |