A universal property for groupoid C‐algebras. I
We describe representations of groupoid C∗‐algebras on Hilbert modules over arbitrary C∗‐algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's integration–disintegration theorem. For a locally compact group, it is related to the a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2018-08, Vol.117 (2), p.345-375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe representations of groupoid C∗‐algebras on Hilbert modules over arbitrary C∗‐algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's integration–disintegration theorem. For a locally compact group, it is related to the automatic continuity of measurable group representations. It implies known descriptions of groupoid C∗‐algebras as crossed products for étale groupoids and transformation groupoids of group actions on spaces. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12131 |