A universal property for groupoid C‐algebras. I

We describe representations of groupoid C∗‐algebras on Hilbert modules over arbitrary C∗‐algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's integration–disintegration theorem. For a locally compact group, it is related to the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2018-08, Vol.117 (2), p.345-375
Hauptverfasser: Buss, Alcides, Holkar, Rohit D., Meyer, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe representations of groupoid C∗‐algebras on Hilbert modules over arbitrary C∗‐algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's integration–disintegration theorem. For a locally compact group, it is related to the automatic continuity of measurable group representations. It implies known descriptions of groupoid C∗‐algebras as crossed products for étale groupoids and transformation groupoids of group actions on spaces.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms.12131