Global topology of hyperbolic components: Cantor circle case
We prove that in the moduli space Md of degree d⩾2 rational maps, any hyperbolic component in the disconnectedness locus and of Cantor circle type is a finite quotient of R4d−4−n×Tn, where n is determined by dynamics. The proof uses some ideas from Riemann surface theory (Abel's Theorem), dynam...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2017-10, Vol.115 (4), p.897-923, Article 897 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that in the moduli space Md of degree d⩾2 rational maps, any hyperbolic component in the disconnectedness locus and of Cantor circle type is a finite quotient of R4d−4−n×Tn, where n is determined by dynamics. The proof uses some ideas from Riemann surface theory (Abel's Theorem), dynamical system and algebraic topology. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12058 |