Functorial tropicalization of logarithmic schemes: the case of constant coefficients
The purpose of this article is to develop foundational techniques from logarithmic geometry in order to define a functorial tropicalization map for fine and saturated logarithmic schemes in the case of constant coefficients. Our approach crucially uses the theory of fans in the sense of Kato and gen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2017-06, Vol.114 (6), p.1081-1113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this article is to develop foundational techniques from logarithmic geometry in order to define a functorial tropicalization map for fine and saturated logarithmic schemes in the case of constant coefficients. Our approach crucially uses the theory of fans in the sense of Kato and generalizes Thuillier's retraction map onto the non‐Archimedean skeleton in the toroidal case. For the convenience of the reader many examples as well as an introductory treatment of the theory of Kato fans are included. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12031 |