WEISS'S QUESTION

There is a function f:R+→{0,1} such that if F(x,y)=f(d(x,y)) (d(x,y) is the distance between x and y), then there is no uncountable homogeneous set for F. If CH holds, we show that there is a similar coloring of Rn with ℵ1 colors so that uncountable sets contain all colors.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2020-10, Vol.66 (4), p.954-958
1. Verfasser: Komjáth, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a function f:R+→{0,1} such that if F(x,y)=f(d(x,y)) (d(x,y) is the distance between x and y), then there is no uncountable homogeneous set for F. If CH holds, we show that there is a similar coloring of Rn with ℵ1 colors so that uncountable sets contain all colors.
ISSN:0025-5793
2041-7942
DOI:10.1112/mtk.12053