WEISS'S QUESTION
There is a function f:R+→{0,1} such that if F(x,y)=f(d(x,y)) (d(x,y) is the distance between x and y), then there is no uncountable homogeneous set for F. If CH holds, we show that there is a similar coloring of Rn with ℵ1 colors so that uncountable sets contain all colors.
Gespeichert in:
Veröffentlicht in: | Mathematika 2020-10, Vol.66 (4), p.954-958 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a function f:R+→{0,1} such that if F(x,y)=f(d(x,y)) (d(x,y) is the distance between x and y), then there is no uncountable homogeneous set for F. If CH holds, we show that there is a similar coloring of Rn with ℵ1 colors so that uncountable sets contain all colors. |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/mtk.12053 |