The p‐order of topological triangulated categories

The p‐order of a triangulated category is an invariant that measures ‘how strongly’ p annihilates objects of the form Y/p. In this paper, we show that the p‐order of a topological triangulated category is at least p−1; here we call a triangulated category topological if it admits a model as a stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2013-12, Vol.6 (4), p.868-914
1. Verfasser: Schwede, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The p‐order of a triangulated category is an invariant that measures ‘how strongly’ p annihilates objects of the form Y/p. In this paper, we show that the p‐order of a topological triangulated category is at least p−1; here we call a triangulated category topological if it admits a model as a stable cofibration category. Our main new tools are enrichments of cofibration categories by Δ‐sets; in particular, we generalize the theory of ‘framings’ (or ‘cosimplicial resolutions’) from model categories to cofibration categories.
ISSN:1753-8416
1753-8424
DOI:10.1112/jtopol/jtt018