The n‐order of algebraic triangulated categories
We quantify certain features of algebraic triangulated categories using the ‘n‐order’, an invariant that measures how strongly n annihilates objects of the form Y/n. We show that the n‐order of an algebraic triangulated category is infinite, and that the p‐order of the p‐local stable homotopy catego...
Gespeichert in:
Veröffentlicht in: | Journal of topology 2013-12, Vol.6 (4), p.857-867 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We quantify certain features of algebraic triangulated categories using the ‘n‐order’, an invariant that measures how strongly n annihilates objects of the form Y/n. We show that the n‐order of an algebraic triangulated category is infinite, and that the p‐order of the p‐local stable homotopy category is exactly p−1 for any prime p. In particular, the p‐local stable homotopy category is not algebraic. |
---|---|
ISSN: | 1753-8416 1753-8424 |
DOI: | 10.1112/jtopol/jtt014 |