Local rigidity of hyperbolic manifolds with geodesic boundary

Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2012-12, Vol.5 (4), p.757-784
Hauptverfasser: Kerckhoff, Steven P., Storm, Peter A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 4
container_start_page 757
container_title Journal of topology
container_volume 5
creator Kerckhoff, Steven P.
Storm, Peter A.
description Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.
doi_str_mv 10.1112/jtopol/jts018
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jtopol_jts018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO0757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3207-cb514170ebda78cad7d5175d145097b6dbd9b16a32e2b16ad127bc5f2a03b4d93</originalsourceid><addsrcrecordid>eNp9jztrwzAUhUVpoWnasbv-gFtdybLsoUMJfYHBHdJZ6OVEQYmC5BL87-vg0rHTuVw-DudD6B7IAwDQx90QjzFMkQnUF2gBgrOiLml5-XdDdY1uct4RUlHCqgV6aqNRASe_8dYPI4493o5Hl3QM3uC9Ovg-BpvxyQ9bvHHRujz9dfw-WJXGW3TVq5Dd3W8u0dfry3r1XrTd28fquS0Mo0QURnMoQRCnrRK1UVZYPg2yUHLSCF1ZbRsNlWLU0XNaoEIb3lNFmC5tw5aomHtNijkn18tj8vtpgAQiz-5ydpez-8SzmT_54Mb_YbnuPjsiuGA_RO1hWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local rigidity of hyperbolic manifolds with geodesic boundary</title><source>Access via Wiley Online Library</source><creator>Kerckhoff, Steven P. ; Storm, Peter A.</creator><creatorcontrib>Kerckhoff, Steven P. ; Storm, Peter A.</creatorcontrib><description>Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n&gt;3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/jtopol/jts018</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of topology, 2012-12, Vol.5 (4), p.757-784</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3207-cb514170ebda78cad7d5175d145097b6dbd9b16a32e2b16ad127bc5f2a03b4d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjtopol%2Fjts018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjtopol%2Fjts018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kerckhoff, Steven P.</creatorcontrib><creatorcontrib>Storm, Peter A.</creatorcontrib><title>Local rigidity of hyperbolic manifolds with geodesic boundary</title><title>Journal of topology</title><description>Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n&gt;3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.</description><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9jztrwzAUhUVpoWnasbv-gFtdybLsoUMJfYHBHdJZ6OVEQYmC5BL87-vg0rHTuVw-DudD6B7IAwDQx90QjzFMkQnUF2gBgrOiLml5-XdDdY1uct4RUlHCqgV6aqNRASe_8dYPI4493o5Hl3QM3uC9Ovg-BpvxyQ9bvHHRujz9dfw-WJXGW3TVq5Dd3W8u0dfry3r1XrTd28fquS0Mo0QURnMoQRCnrRK1UVZYPg2yUHLSCF1ZbRsNlWLU0XNaoEIb3lNFmC5tw5aomHtNijkn18tj8vtpgAQiz-5ydpez-8SzmT_54Mb_YbnuPjsiuGA_RO1hWw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Kerckhoff, Steven P.</creator><creator>Storm, Peter A.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201212</creationdate><title>Local rigidity of hyperbolic manifolds with geodesic boundary</title><author>Kerckhoff, Steven P. ; Storm, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3207-cb514170ebda78cad7d5175d145097b6dbd9b16a32e2b16ad127bc5f2a03b4d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerckhoff, Steven P.</creatorcontrib><creatorcontrib>Storm, Peter A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerckhoff, Steven P.</au><au>Storm, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local rigidity of hyperbolic manifolds with geodesic boundary</atitle><jtitle>Journal of topology</jtitle><date>2012-12</date><risdate>2012</risdate><volume>5</volume><issue>4</issue><spage>757</spage><epage>784</epage><pages>757-784</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n&gt;3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.</abstract><pub>Oxford University Press</pub><doi>10.1112/jtopol/jts018</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8416
ispartof Journal of topology, 2012-12, Vol.5 (4), p.757-784
issn 1753-8416
1753-8424
language eng
recordid cdi_crossref_primary_10_1112_jtopol_jts018
source Access via Wiley Online Library
title Local rigidity of hyperbolic manifolds with geodesic boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20rigidity%20of%20hyperbolic%20manifolds%20with%20geodesic%20boundary&rft.jtitle=Journal%20of%20topology&rft.au=Kerckhoff,%20Steven%20P.&rft.date=2012-12&rft.volume=5&rft.issue=4&rft.spage=757&rft.epage=784&rft.pages=757-784&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/jtopol/jts018&rft_dat=%3Cwiley_cross%3ETOPO0757%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true