Local rigidity of hyperbolic manifolds with geodesic boundary
Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.
Gespeichert in:
Veröffentlicht in: | Journal of topology 2012-12, Vol.5 (4), p.757-784 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid. |
---|---|
ISSN: | 1753-8416 1753-8424 |
DOI: | 10.1112/jtopol/jts018 |