Local rigidity of hyperbolic manifolds with geodesic boundary

Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2012-12, Vol.5 (4), p.757-784
Hauptverfasser: Kerckhoff, Steven P., Storm, Peter A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let W be a compact hyperbolic n‐manifold with totally geodesic boundary. We prove that if n>3, then the holonomy representation of π1 (W) into the isometry group of hyperbolic n‐space is infinitesimally rigid.
ISSN:1753-8416
1753-8424
DOI:10.1112/jtopol/jts018