The almost alternating diagrams of the trivial knot
Bankwitz characterized the alternating diagrams of the trivial knot. A non-alternating diagram is called almost alternating if one crossing change makes the diagram alternating. We characterize the almost alternating diagrams of the trivial knot. As a corollary, we determine the unknotting number on...
Gespeichert in:
Veröffentlicht in: | Journal of topology 2009, Vol.2 (1), p.77-104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bankwitz characterized the alternating diagrams of the trivial knot. A non-alternating diagram is called almost alternating if one crossing change makes the diagram alternating. We characterize the almost alternating diagrams of the trivial knot. As a corollary, we determine the unknotting number one alternating knots with the property that the unknotting operation can be done on its alternating diagram. |
---|---|
ISSN: | 1753-8416 1753-8424 |
DOI: | 10.1112/jtopol/jtp001 |