Bimahonian distributions
Motivated by permutation statistics, we define, for any complex reflection group W, a family of bivariate generating functions Wσ(t, q). They are defined either in terms of Hilbert series for W-invariant polynomials when W acts diagonally on two sets of variables or, equivalently, as sums involving...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2008-06, Vol.77 (3), p.627-646 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by permutation statistics, we define, for any complex reflection group W, a family of bivariate generating functions Wσ(t, q). They are defined either in terms of Hilbert series for W-invariant polynomials when W acts diagonally on two sets of variables or, equivalently, as sums involving the fake degrees of irreducible representations for W. It is shown that Wσ(t, q) satisfies a ‘bicyclic sieving phenomenon’ which combinatorially interprets its values when t and q are certain roots of unity. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms/jdn004 |