Bimahonian distributions

Motivated by permutation statistics, we define, for any complex reflection group W, a family of bivariate generating functions Wσ(t, q). They are defined either in terms of Hilbert series for W-invariant polynomials when W acts diagonally on two sets of variables or, equivalently, as sums involving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2008-06, Vol.77 (3), p.627-646
Hauptverfasser: Barcelo, Hélène, Reiner, Victor, Stanton, Dennis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by permutation statistics, we define, for any complex reflection group W, a family of bivariate generating functions Wσ(t, q). They are defined either in terms of Hilbert series for W-invariant polynomials when W acts diagonally on two sets of variables or, equivalently, as sums involving the fake degrees of irreducible representations for W. It is shown that Wσ(t, q) satisfies a ‘bicyclic sieving phenomenon’ which combinatorially interprets its values when t and q are certain roots of unity.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms/jdn004