The number of positive solutions for n$n$‐coupled elliptic systems
We study the number of positive solutions to the n$n$‐coupled elliptic system −Δui=μiui2∗−1+∑j=1,j≠inβijuipij−1ujqij,ui∈D1,2(RN),i=1,2,…,n,$$\begin{align*} -\Delta u_i&=\mu _iu_i^{2^*-1}+\sum _{j=1,\,j\ne i}^n\beta _{ij}u_i^{p_{ij}-1}u_j^{q_{ij}},\ u_i\in \mathcal {D}^{1,2}(\mathbb {R}^N),\\ &am...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-12, Vol.110 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the number of positive solutions to the n$n$‐coupled elliptic system
−Δui=μiui2∗−1+∑j=1,j≠inβijuipij−1ujqij,ui∈D1,2(RN),i=1,2,…,n,$$\begin{align*} -\Delta u_i&=\mu _iu_i^{2^*-1}+\sum _{j=1,\,j\ne i}^n\beta _{ij}u_i^{p_{ij}-1}u_j^{q_{ij}},\ u_i\in \mathcal {D}^{1,2}(\mathbb {R}^N),\\ &\quad i=1,2,\ldots ,n, \end{align*}$$where N⩾3$N\geqslant 3$, n⩾2$n\geqslant 2$, μi>0$\mu _i>0$, βij>0$\beta _{ij}>0$, pij |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.70040 |