Generating Countable Sets of Permutations

Let E be an infinite set. In answer to a question of Wagon, I show that every countable subset of the symmetric group Sym(E) is contained in a 2-generator subgroup of Sym(E). In answer to a question of Macpherson and Neumann, I show that, if Sym(E) is generated by A ∪ B where |B| ≤ ‖E‖, then Sym(E)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 1995-04, Vol.51 (2), p.230-242
1. Verfasser: Galvin, Fred
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be an infinite set. In answer to a question of Wagon, I show that every countable subset of the symmetric group Sym(E) is contained in a 2-generator subgroup of Sym(E). In answer to a question of Macpherson and Neumann, I show that, if Sym(E) is generated by A ∪ B where |B| ≤ ‖E‖, then Sym(E) is generated by A ∪ {γ} for some permutation γ in Sym(E).
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms/51.2.230