Generating Countable Sets of Permutations
Let E be an infinite set. In answer to a question of Wagon, I show that every countable subset of the symmetric group Sym(E) is contained in a 2-generator subgroup of Sym(E). In answer to a question of Macpherson and Neumann, I show that, if Sym(E) is generated by A ∪ B where |B| ≤ ‖E‖, then Sym(E)...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 1995-04, Vol.51 (2), p.230-242 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let E be an infinite set. In answer to a question of Wagon, I show that every countable subset of the symmetric group Sym(E) is contained in a 2-generator subgroup of Sym(E). In answer to a question of Macpherson and Neumann, I show that, if Sym(E) is generated by A ∪ B where |B| ≤ ‖E‖, then Sym(E) is generated by A ∪ {γ} for some permutation γ in Sym(E). |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms/51.2.230 |