Comparison of nonarchimedean and logarithmic mirror constructions via the Frobenius structure theorem
For a log Calabi Yau pair (X,D$X,D$) with X∖D$X\setminus D$ smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-11, Vol.110 (5), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a log Calabi Yau pair (X,D$X,D$) with X∖D$X\setminus D$ smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra constructed by Gross–Siebert are given by the naive curve counts defined by Keel–Yu. As a corollary, we deduce that the equality of the mirror algebras constructed by Gross–Siebert and Keel–Yu in the case X∖D$X\setminus D$ contains a Zariski dense torus. In addition, we use this result to prove a mirror conjecture proposed by Mandel for Fano pairs satisfying the maximal degeneracy assumption. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12998 |