Comparison of nonarchimedean and logarithmic mirror constructions via the Frobenius structure theorem

For a log Calabi Yau pair (X,D$X,D$) with X∖D$X\setminus D$ smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-11, Vol.110 (5), p.n/a
1. Verfasser: Johnston, Samuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a log Calabi Yau pair (X,D$X,D$) with X∖D$X\setminus D$ smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra constructed by Gross–Siebert are given by the naive curve counts defined by Keel–Yu. As a corollary, we deduce that the equality of the mirror algebras constructed by Gross–Siebert and Keel–Yu in the case X∖D$X\setminus D$ contains a Zariski dense torus. In addition, we use this result to prove a mirror conjecture proposed by Mandel for Fano pairs satisfying the maximal degeneracy assumption.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12998