Rational points on complete intersections of cubic and quadric hypersurfaces over Fq(t)$\mathbb {F}_q(t)
Using a two‐dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non‐singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over Fq(t)$\mathbb {F}_q(t)$, provided char(Fq)>3$\operato...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-10, Vol.110 (4), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a two‐dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non‐singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over Fq(t)$\mathbb {F}_q(t)$, provided char(Fq)>3$\operatorname{char}(\mathbb {F}_q)>3$. Under the same hypotheses, we also verify weak approximation. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12991 |