Rational points on complete intersections of cubic and quadric hypersurfaces over Fq(t)$\mathbb {F}_q(t)

Using a two‐dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non‐singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over Fq(t)$\mathbb {F}_q(t)$, provided char(Fq)>3$\operato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-10, Vol.110 (4), p.n/a
1. Verfasser: Glas, Jakob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a two‐dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non‐singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over Fq(t)$\mathbb {F}_q(t)$, provided char(Fq)>3$\operatorname{char}(\mathbb {F}_q)>3$. Under the same hypotheses, we also verify weak approximation.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12991