Delta‐points and their implications for the geometry of Banach spaces

We show that the Lipschitz‐free space with the Radon–Nikodým property and a Daugavet point recently constructed by Veeorg is in fact a dual space isomorphic to ℓ1$\ell _1$. Furthermore, we answer an open problem from the literature by showing that there exists a superreflexive space, in the form of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-05, Vol.109 (5), p.n/a
Hauptverfasser: Abrahamsen, Trond A., Aliaga, Ramón J., Lima, Vegard, Martiny, André, Perreau, Yoël, Prochazka, Antonín, Veeorg, Triinu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Lipschitz‐free space with the Radon–Nikodým property and a Daugavet point recently constructed by Veeorg is in fact a dual space isomorphic to ℓ1$\ell _1$. Furthermore, we answer an open problem from the literature by showing that there exists a superreflexive space, in the form of a renorming of ℓ2$\ell _2$, with a Δ$\Delta$‐point. Building on these two results, we are able to renorm every infinite‐dimensional Banach space to have a Δ$\Delta$‐point. Next, we establish powerful relations between existence of Δ$\Delta$‐points in Banach spaces and their duals. As an application, we obtain sharp results about the influence of Δ$\Delta$‐points for the asymptotic geometry of Banach spaces. In addition, we prove that if X$X$ is a Banach space with a shrinking k$k$‐unconditional basis with k
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12913