Characterization of the null energy condition via displacement convexity of entropy
We characterize the null energy condition for an (n+1)$(n+1)$‐dimensional, time‐oriented Lorentzian manifold in terms of convexity of the relative (n−1)$(n-1)$‐Renyi entropy along displacement interpolations on null hypersurfaces. More generally, we also consider Lorentzian manifolds with a smooth w...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-01, Vol.109 (1), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the null energy condition for an (n+1)$(n+1)$‐dimensional, time‐oriented Lorentzian manifold in terms of convexity of the relative (n−1)$(n-1)$‐Renyi entropy along displacement interpolations on null hypersurfaces. More generally, we also consider Lorentzian manifolds with a smooth weight function and introduce the Bakry–Emery N$N$‐null energy condition that we characterize in terms of null displacement convexity of the relative N$N$‐Renyi entropy. As application we then revisit Hawking's area monotonicity theorem for a black hole horizon and the Penrose Singularity Theorem from the viewpoint of this characterization and in the context of weighted Lorentzian manifolds. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12846 |