Simplicial approach to path homology of quivers, marked categories, groups and algebras

We develop a generalisation of the path homology theory introduced by Grigor'yan, Lin, Muranov and Yau (GLMY theory) in a general simplicial setting. The new theory includes as particular cases the GLMY theory for path complexes and new homology theories: path homology of categories with a chos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-01, Vol.109 (1), p.n/a
Hauptverfasser: Ivanov, Sergei O., Pavutnitskiy, Fedor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a generalisation of the path homology theory introduced by Grigor'yan, Lin, Muranov and Yau (GLMY theory) in a general simplicial setting. The new theory includes as particular cases the GLMY theory for path complexes and new homology theories: path homology of categories with a chosen set of morphisms (marked categories) groups with a chosen subset (marked groups) and path Hochschild homology of algebras with chosen vector subspaces (marked algebras). Using our general machinery, we also introduce a new homology theory for quivers that we call square‐commutative homology of quivers and compare it with the theory developed by Grigor'yan, Muranov, Vershinin and Yau.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12812