Heights on curves and limits of Hodge structures

We exhibit a precise connection between Néron–Tate heights on smooth curves and biextension heights of limit mixed Hodge structures associated to smoothing deformations of singular quotient curves. Our approach suggests a new way to compute Beilinson–Bloch heights in higher dimensions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2023-07, Vol.108 (1), p.340-361
Hauptverfasser: Bloch, Spencer, de Jong, Robin, Sertöz, Emre Can
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We exhibit a precise connection between Néron–Tate heights on smooth curves and biextension heights of limit mixed Hodge structures associated to smoothing deformations of singular quotient curves. Our approach suggests a new way to compute Beilinson–Bloch heights in higher dimensions.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12747