Self‐adjoint Laplacians and symmetric diffusions on hyperbolic attractors

We construct self‐adjoint Laplacians and symmetric Markov semigroups on hyperbolic attractors, endowed with Gibbs u$u$‐measures. If the measure has full support, we can also conclude the existence of an associated symmetric diffusion process. In the special case of partially hyperbolic diffeomorphis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2023-06, Vol.107 (6), p.1925-1958
Hauptverfasser: Alikhanloo, Shayan, Hinz, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct self‐adjoint Laplacians and symmetric Markov semigroups on hyperbolic attractors, endowed with Gibbs u$u$‐measures. If the measure has full support, we can also conclude the existence of an associated symmetric diffusion process. In the special case of partially hyperbolic diffeomorphisms induced by geodesic flows on negatively curved manifolds the Laplacians we consider are self‐adjoint extensions of well‐known classical leafwise Laplacians. We observe a quasi‐invariance property of energy densities in the u$u$‐conformal case and the existence of nonconstant functions of zero energy.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12729