Self‐adjoint Laplacians and symmetric diffusions on hyperbolic attractors
We construct self‐adjoint Laplacians and symmetric Markov semigroups on hyperbolic attractors, endowed with Gibbs u$u$‐measures. If the measure has full support, we can also conclude the existence of an associated symmetric diffusion process. In the special case of partially hyperbolic diffeomorphis...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2023-06, Vol.107 (6), p.1925-1958 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct self‐adjoint Laplacians and symmetric Markov semigroups on hyperbolic attractors, endowed with Gibbs u$u$‐measures. If the measure has full support, we can also conclude the existence of an associated symmetric diffusion process. In the special case of partially hyperbolic diffeomorphisms induced by geodesic flows on negatively curved manifolds the Laplacians we consider are self‐adjoint extensions of well‐known classical leafwise Laplacians. We observe a quasi‐invariance property of energy densities in the u$u$‐conformal case and the existence of nonconstant functions of zero energy. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12729 |