The Hardy–Littlewood–Chowla conjecture in the presence of a Siegel zero
Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy–Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers x$x$, and any distinct integers h1,⋯,hk,h1′,⋯,hℓ′$h_1,\dots ,h_k,h^{\prime }_1,\dots ,h^{\prime }_\ell$, we establish an asymptot...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-12, Vol.106 (4), p.3317-3378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy–Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers x$x$, and any distinct integers h1,⋯,hk,h1′,⋯,hℓ′$h_1,\dots ,h_k,h^{\prime }_1,\dots ,h^{\prime }_\ell$, we establish an asymptotic formula for
∑n⩽xΛ(n+h1)⋯Λ(n+hk)λ(n+h1′)⋯λ(n+hℓ′)$$\begin{equation*} \hspace*{13pt}\sum _{n\leqslant x}\Lambda (n+h_1)\cdots \Lambda (n+h_k)\lambda (n+h_{1}^{\prime })\cdots \lambda (n+h_{\ell }^{\prime })\hspace*{-13pt} \end{equation*}$$for any 0⩽k⩽2$0\leqslant k\leqslant 2$ and ℓ⩾0$\ell \geqslant 0$. Specializing to either ℓ=0$\ell =0$ or k=0$k=0$, we deduce the previously known results on the Hardy–Littlewood (or twin primes) conjecture and the Chowla conjecture under the existence of Siegel zeros, due to Heath‐Brown and Chinis, respectively. The range of validity of our asymptotic formula is wider than in these previous results. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12663 |