Hilbert schemes, commuting matrices and hyperkähler geometry

We represent algebraic curves via commuting matrix polynomials. This allows us to show that the Hilbert scheme of cohomologically stable non‐planar curves of genus 0 and degree d$d$ in P3∖P1${\mathbb {P}}^3\backslash {\mathbb {P}}^1$ is isomorphic to a complexified hyperkähler quotient of an open su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2022-09, Vol.106 (2), p.734-755
Hauptverfasser: Bielawski, Roger, Peternell, Carolin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We represent algebraic curves via commuting matrix polynomials. This allows us to show that the Hilbert scheme of cohomologically stable non‐planar curves of genus 0 and degree d$d$ in P3∖P1${\mathbb {P}}^3\backslash {\mathbb {P}}^1$ is isomorphic to a complexified hyperkähler quotient of an open subset of a vector space by a non‐reductive Lie group.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12584