Hilbert schemes, commuting matrices and hyperkähler geometry
We represent algebraic curves via commuting matrix polynomials. This allows us to show that the Hilbert scheme of cohomologically stable non‐planar curves of genus 0 and degree d$d$ in P3∖P1${\mathbb {P}}^3\backslash {\mathbb {P}}^1$ is isomorphic to a complexified hyperkähler quotient of an open su...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-09, Vol.106 (2), p.734-755 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We represent algebraic curves via commuting matrix polynomials. This allows us to show that the Hilbert scheme of cohomologically stable non‐planar curves of genus 0 and degree d$d$ in P3∖P1${\mathbb {P}}^3\backslash {\mathbb {P}}^1$ is isomorphic to a complexified hyperkähler quotient of an open subset of a vector space by a non‐reductive Lie group. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12584 |