Noncoercive diffusion equations with Radon measures as initial data
We study Radon measure‐valued solutions of the Cauchy–Dirichlet problem for ∂tu=Δϕ(u)$\partial _t u = \Delta \phi (u)$ for a continuous, nondecreasing, at most powerlike ϕ$\phi$. We prove well‐posedness and regularity results, which depend on whether or not the initial data charge sets of suitable c...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-04, Vol.105 (3), p.1823-1896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Radon measure‐valued solutions of the Cauchy–Dirichlet problem for ∂tu=Δϕ(u)$\partial _t u = \Delta \phi (u)$ for a continuous, nondecreasing, at most powerlike ϕ$\phi$. We prove well‐posedness and regularity results, which depend on whether or not the initial data charge sets of suitable capacity (determined both by the Laplacian and by the growth order of ϕ$\phi$), and on suitable compatibility conditions. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12548 |