Noncoercive diffusion equations with Radon measures as initial data

We study Radon measure‐valued solutions of the Cauchy–Dirichlet problem for ∂tu=Δϕ(u)$\partial _t u = \Delta \phi (u)$ for a continuous, nondecreasing, at most powerlike ϕ$\phi$. We prove well‐posedness and regularity results, which depend on whether or not the initial data charge sets of suitable c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2022-04, Vol.105 (3), p.1823-1896
Hauptverfasser: Porzio, Maria Michaela, Smarrazzo, Flavia, Tesei, Alberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Radon measure‐valued solutions of the Cauchy–Dirichlet problem for ∂tu=Δϕ(u)$\partial _t u = \Delta \phi (u)$ for a continuous, nondecreasing, at most powerlike ϕ$\phi$. We prove well‐posedness and regularity results, which depend on whether or not the initial data charge sets of suitable capacity (determined both by the Laplacian and by the growth order of ϕ$\phi$), and on suitable compatibility conditions.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12548