On rectification and enrichment of infinity properads

We develop a theory of infinity properads enriched in a general symmetric monoidal infinity category. These are defined as presheaves, satisfying a Segal condition and a Rezk completeness condition, over certain categories of graphs. In particular, we introduce a new category of level graphs which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2022-04, Vol.105 (3), p.1418-1517
Hauptverfasser: Chu, Hongyi, Hackney, Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a theory of infinity properads enriched in a general symmetric monoidal infinity category. These are defined as presheaves, satisfying a Segal condition and a Rezk completeness condition, over certain categories of graphs. In particular, we introduce a new category of level graphs which also allow us to give a framework for algebras over an enriched infinity properad. We show that one can vary the category of graphs without changing the underlying theory. We also show that infinity properads cannot always be rectified, indicating that a conjecture of the second author and Robertson is unlikely to hold. This stands in stark contrast to the situation for infinity operads, and we further demarcate these situations by examining the cases of infinity dioperads and infinity output properads. In both cases, we provide a rectification theorem that says that each up‐to‐homotopy object is equivalent to a strict one.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12528