Kirby–Thompson distance for trisections of knotted surfaces
We adapt work of Kirby–Thompson and Zupan to define an integer invariant L(T)$\mathcal {L}(\mathcal {T})$ of a bridge trisection T$\mathcal {T}$ of a smooth surface S$S$ in S4$S^4$ or B4$B^4$. We show that when L(T)=0$\mathcal {L}(\mathcal {T})=0$, then the surface S$S$ is unknotted. We also show th...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-03, Vol.105 (2), p.765-793 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We adapt work of Kirby–Thompson and Zupan to define an integer invariant L(T)$\mathcal {L}(\mathcal {T})$ of a bridge trisection T$\mathcal {T}$ of a smooth surface S$S$ in S4$S^4$ or B4$B^4$. We show that when L(T)=0$\mathcal {L}(\mathcal {T})=0$, then the surface S$S$ is unknotted. We also show that for a trisection T$\mathcal {T}$ of an irreducible surface, bridge number produces a lower bound for L(T)$\mathcal {L}(\mathcal {T})$. Consequently L$\mathcal {L}$ can be arbitrarily large. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12513 |