GL(2)‐geometry and complex structures
We study GL(2)‐structures on differential manifolds. A GL(2)‐structure is a smooth field of rational normal curves in the tangent bundle of a manifold. We provide an explicit construction of a canonical connection for any GL(2)‐structure in any dimension greater than 3. Moreover, we prove that any G...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2021-11, Vol.104 (4), p.1717-1737 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study GL(2)‐structures on differential manifolds. A GL(2)‐structure is a smooth field of rational normal curves in the tangent bundle of a manifold. We provide an explicit construction of a canonical connection for any GL(2)‐structure in any dimension greater than 3. Moreover, we prove that any GL(2)‐structure on an even‐dimensional manifold defines a certain almost‐complex structure on a bundle over the original manifold. Further, we exploit the almost‐complex structure to study various notions of integrability of GL(2)‐structures. For this, we develop a twistor‐like construction. In particular, we prove that in dimension 4 a GL(2)‐structure is torsion‐free if and only if the associated almost‐complex structure is integrable. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12472 |