GL(2)‐geometry and complex structures

We study GL(2)‐structures on differential manifolds. A GL(2)‐structure is a smooth field of rational normal curves in the tangent bundle of a manifold. We provide an explicit construction of a canonical connection for any GL(2)‐structure in any dimension greater than 3. Moreover, we prove that any G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2021-11, Vol.104 (4), p.1717-1737
1. Verfasser: Kryński, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study GL(2)‐structures on differential manifolds. A GL(2)‐structure is a smooth field of rational normal curves in the tangent bundle of a manifold. We provide an explicit construction of a canonical connection for any GL(2)‐structure in any dimension greater than 3. Moreover, we prove that any GL(2)‐structure on an even‐dimensional manifold defines a certain almost‐complex structure on a bundle over the original manifold. Further, we exploit the almost‐complex structure to study various notions of integrability of GL(2)‐structures. For this, we develop a twistor‐like construction. In particular, we prove that in dimension 4 a GL(2)‐structure is torsion‐free if and only if the associated almost‐complex structure is integrable.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12472