Schauder theorems for a class of (pseudo‐)differential operators on finite‐ and infinite‐dimensional state spaces

We prove maximal regularity results in Hölder and Zygmund spaces for linear stationary and evolution equations driven by a class of differential and pseudo‐differential operators L, both in finite and in infinite dimension. The assumptions are given in terms of the semigroup generated by L. We cover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2021-09, Vol.104 (2), p.492-540
Hauptverfasser: Lunardi, Alessandra, Röckner, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove maximal regularity results in Hölder and Zygmund spaces for linear stationary and evolution equations driven by a class of differential and pseudo‐differential operators L, both in finite and in infinite dimension. The assumptions are given in terms of the semigroup generated by L. We cover the cases of fractional Laplacians and Ornstein–Uhlenbeck operators with fractional diffusion in finite dimension, and several types of local and nonlocal Ornstein–Uhlenbeck operators, as well as the Gross Laplacian and its fractional powers, in infinite dimension.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12436