Geometry of weighted Lorentz–Finsler manifolds I: singularity theorems

We develop the theory of weighted Ricci curvature in a weighted Lorentz–Finsler framework and extend the classical singularity theorems of general relativity. In order to reach this result, we generalize the Jacobi, Riccati and Raychaudhuri equations to weighted Finsler spacetimes and study their im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2021-07, Vol.104 (1), p.362-393
Hauptverfasser: Lu, Yufeng, Minguzzi, Ettore, Ohta, Shin‐ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop the theory of weighted Ricci curvature in a weighted Lorentz–Finsler framework and extend the classical singularity theorems of general relativity. In order to reach this result, we generalize the Jacobi, Riccati and Raychaudhuri equations to weighted Finsler spacetimes and study their implications for the existence of conjugate points along causal geodesics. We also show a weighted Lorentz–Finsler version of the Bonnet–Myers theorem based on a generalized Bishop inequality.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12434