Geometry of weighted Lorentz–Finsler manifolds I: singularity theorems
We develop the theory of weighted Ricci curvature in a weighted Lorentz–Finsler framework and extend the classical singularity theorems of general relativity. In order to reach this result, we generalize the Jacobi, Riccati and Raychaudhuri equations to weighted Finsler spacetimes and study their im...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2021-07, Vol.104 (1), p.362-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop the theory of weighted Ricci curvature in a weighted Lorentz–Finsler framework and extend the classical singularity theorems of general relativity. In order to reach this result, we generalize the Jacobi, Riccati and Raychaudhuri equations to weighted Finsler spacetimes and study their implications for the existence of conjugate points along causal geodesics. We also show a weighted Lorentz–Finsler version of the Bonnet–Myers theorem based on a generalized Bishop inequality. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12434 |