Elliptic problems involving the 1–Laplacian and a singular lower order term

This paper is concerned with the Dirichlet problem for an equation involving the 1–Laplacian operator Δ1u:=div(Du|Du|) and having a singular term of the type f(x)uγ. Here f∈LN(Ω) is nonnegative, 00 almost everywhere, the solution satisfies those features that might be expected as well as a uniquenes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2019-04, Vol.99 (2), p.349-376
Hauptverfasser: De Cicco, V., Giachetti, D., Segura de León, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the Dirichlet problem for an equation involving the 1–Laplacian operator Δ1u:=div(Du|Du|) and having a singular term of the type f(x)uγ. Here f∈LN(Ω) is nonnegative, 00 almost everywhere, the solution satisfies those features that might be expected as well as a uniqueness result. We also give explicit one–dimensional examples that show that, in general, uniqueness does not hold. We remark that the Anzellotti theory of L∞–divergence–measure vector fields must be extended to deal with this equation.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12172