Some advances on Sidorenko's conjecture

A bipartite graph H is said to have Sidorenko's property if the probability that the uniform random mapping from V(H) to the vertex set of any graph G is a homomorphism is at least the product over all edges in H of the probability that the edge is mapped to an edge of G. In this paper, we prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2018-12, Vol.98 (3), p.593-608
Hauptverfasser: Conlon, David, Kim, Jeong Han, Lee, Choongbum, Lee, Joonkyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bipartite graph H is said to have Sidorenko's property if the probability that the uniform random mapping from V(H) to the vertex set of any graph G is a homomorphism is at least the product over all edges in H of the probability that the edge is mapped to an edge of G. In this paper, we provide three distinct families of bipartite graphs that have Sidorenko's property. First, using branching random walks, we develop an embedding algorithm which allows us to prove that bipartite graphs admitting a certain type of tree decomposition have Sidorenko's property. Second, we use the concept of locally dense graphs to prove that subdivisions of certain graphs, including cliques, have Sidorenko's property. Third, we prove that if H has Sidorenko's property, then the Cartesian product of H with an even cycle also has Sidorenko's property.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12142