On the non-realizability of braid groups by diffeomorphisms

Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2016-06, Vol.48 (3), p.457-471
Hauptverfasser: Salter, Nick, Tshishiku, Bena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 3
container_start_page 457
container_title The Bulletin of the London Mathematical Society
container_volume 48
creator Salter, Nick
Tshishiku, Bena
description Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points and restricting to the identity on the boundary. Our methods are applied to give a new proof of Morita's non-lifting theorem in the best possible range. These techniques extend to the more general setting of spaces of codimension-2 embeddings, and we obtain corresponding results for spherical motion groups, including the string motion group.
doi_str_mv 10.1112/blms/bdw016
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bdw016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1112/blms/bdw016</oup_id><sourcerecordid>10.1112/blms/bdw016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3067-4cc45a8e3d4b82e3db45da4c2207341318dc8da5228d8aaeca64dc4c7e608d5a3</originalsourceid><addsrcrecordid>eNp9j71OwzAYRS0EEqEw8QKeWFDo99lO4ooJqvIjBXUA5sh_oUZJE9lFVXh6UoW5013OPdIh5BrhDhHZXDdtnGu7B8xPSIIiX6QMGZySBICJNIcFPycXMX4DIIcCE3K_3tLdxtFtt02DU43_Vdo3fjfQrqY6KG_pV-h--kj1QK2va9e1Xeg3PrbxkpzVqonu6n9n5PNp9bF8Scv18-vyoUwNh7xIhTEiU9JxK7Rk42iRWSUMY1BwgRylNdKqjDFppVLOqFxYI0zhcpA2U3xGbievCV2MwdVVH3yrwlAhVIfu6tBdTd0jjRO9940bjqHVY_n2DiIrxs_N9BlLj8r_AE6kak4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the non-realizability of braid groups by diffeomorphisms</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Salter, Nick ; Tshishiku, Bena</creator><creatorcontrib>Salter, Nick ; Tshishiku, Bena</creatorcontrib><description>Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points and restricting to the identity on the boundary. Our methods are applied to give a new proof of Morita's non-lifting theorem in the best possible range. These techniques extend to the more general setting of spaces of codimension-2 embeddings, and we obtain corresponding results for spherical motion groups, including the string motion group.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdw016</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2016-06, Vol.48 (3), p.457-471</ispartof><rights>2016 London Mathematical Society 2016</rights><rights>2016 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3067-4cc45a8e3d4b82e3db45da4c2207341318dc8da5228d8aaeca64dc4c7e608d5a3</citedby><cites>FETCH-LOGICAL-c3067-4cc45a8e3d4b82e3db45da4c2207341318dc8da5228d8aaeca64dc4c7e608d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbdw016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbdw016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><title>On the non-realizability of braid groups by diffeomorphisms</title><title>The Bulletin of the London Mathematical Society</title><description>Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points and restricting to the identity on the boundary. Our methods are applied to give a new proof of Morita's non-lifting theorem in the best possible range. These techniques extend to the more general setting of spaces of codimension-2 embeddings, and we obtain corresponding results for spherical motion groups, including the string motion group.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAYRS0EEqEw8QKeWFDo99lO4ooJqvIjBXUA5sh_oUZJE9lFVXh6UoW5013OPdIh5BrhDhHZXDdtnGu7B8xPSIIiX6QMGZySBICJNIcFPycXMX4DIIcCE3K_3tLdxtFtt02DU43_Vdo3fjfQrqY6KG_pV-h--kj1QK2va9e1Xeg3PrbxkpzVqonu6n9n5PNp9bF8Scv18-vyoUwNh7xIhTEiU9JxK7Rk42iRWSUMY1BwgRylNdKqjDFppVLOqFxYI0zhcpA2U3xGbievCV2MwdVVH3yrwlAhVIfu6tBdTd0jjRO9940bjqHVY_n2DiIrxs_N9BlLj8r_AE6kak4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Salter, Nick</creator><creator>Tshishiku, Bena</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201606</creationdate><title>On the non-realizability of braid groups by diffeomorphisms</title><author>Salter, Nick ; Tshishiku, Bena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3067-4cc45a8e3d4b82e3db45da4c2207341318dc8da5228d8aaeca64dc4c7e608d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salter, Nick</creatorcontrib><creatorcontrib>Tshishiku, Bena</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salter, Nick</au><au>Tshishiku, Bena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the non-realizability of braid groups by diffeomorphisms</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2016-06</date><risdate>2016</risdate><volume>48</volume><issue>3</issue><spage>457</spage><epage>471</epage><pages>457-471</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points and restricting to the identity on the boundary. Our methods are applied to give a new proof of Morita's non-lifting theorem in the best possible range. These techniques extend to the more general setting of spaces of codimension-2 embeddings, and we obtain corresponding results for spherical motion groups, including the string motion group.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdw016</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2016-06, Vol.48 (3), p.457-471
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bdw016
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title On the non-realizability of braid groups by diffeomorphisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20non-realizability%20of%20braid%20groups%20by%20diffeomorphisms&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Salter,%20Nick&rft.date=2016-06&rft.volume=48&rft.issue=3&rft.spage=457&rft.epage=471&rft.pages=457-471&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdw016&rft_dat=%3Coup_cross%3E10.1112/blms/bdw016%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1112/blms/bdw016&rfr_iscdi=true