On the non-realizability of braid groups by diffeomorphisms

Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2016-06, Vol.48 (3), p.457-471
Hauptverfasser: Salter, Nick, Tshishiku, Bena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract For every compact surface $S$ of finite type (possibly with boundary components but without punctures), we show that when $n$ is sufficiently large there is no lift $\sigma $ of the surface braid group $B_n(S)$ to $ {\rm Diff}(S,n)$, the group of diffeomorphisms preserving $n$ marked points and restricting to the identity on the boundary. Our methods are applied to give a new proof of Morita's non-lifting theorem in the best possible range. These techniques extend to the more general setting of spaces of codimension-2 embeddings, and we obtain corresponding results for spherical motion groups, including the string motion group.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdw016