Rank 3 finite p-group actions on products of spheres
Abstract Let $p$ be an odd prime. We prove that every rank 3 finite $p$-group acts freely and smoothly on a product of three spheres. To construct this action, we first prove a generalization of a theorem of Lück and Oliver on constructions of $G$-equivariant vector bundles. We also give some other...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2016-04, Vol.48 (2), p.325-340 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $p$ be an odd prime. We prove that every rank 3 finite $p$-group acts freely and smoothly on a product of three spheres. To construct this action, we first prove a generalization of a theorem of Lück and Oliver on constructions of $G$-equivariant vector bundles. We also give some other applications of this generalization. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdw001 |