Galois structure of S-units

Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2016-04, Vol.48 (2), p.251-259
Hauptverfasser: Pacheco, D. R. Riveros, Weiss, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 2
container_start_page 251
container_title The Bulletin of the London Mathematical Society
container_volume 48
creator Pacheco, D. R. Riveros
Weiss, A.
description Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chinburg class $\Omega _m$ has shown that the stable isomorphism class of $E$ is determined by the data$\Delta S,\boldsymbol {\mu }, \Omega _m,$ and a special character $\varepsilon $ of $H^2(G,{\rm Hom}(\Delta S,\boldsymbol {\mu } )).$ This paper explains how to build a $G$-module $M$ from this data that is stably isomorphic to $E\oplus {\mathbb Z} G^n,$ for some integer $n.$
doi_str_mv 10.1112/blms/bdv100
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bdv100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1112/blms/bdv100</oup_id><sourcerecordid>10.1112/blms/bdv100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2641-681128e78a514296f3c65c637bcabeb873446b577840d0a8396e8547fbe20b923</originalsourceid><addsrcrecordid>eNp9jzFPwzAUhC0EEqEwMbJkYkFu37Md2xmhglIpiKEwW7brSEEpqewE1H9PqjB3uuW7O32E3CLMEZEtXLtLC7f9QYAzkqGQJWXI4JxkAExQCSW_JFcpfQEgB4UZuVvZtmtSnvo4-H6IIe_qfEOH76ZP1-Sitm0KN_85I58vzx_LV1q9r9bLx4p6JgVSqcdrHZS2BQpWypp7WXjJlfPWBacVF0K6QiktYAtW81IGXQhVu8DAlYzPyMO062OXUgy12cdmZ-PBIJijlzl6mclrpHGif5s2HE6h5ql62wArcOzcT51u2J8c_wP_olxN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Galois structure of S-units</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Pacheco, D. R. Riveros ; Weiss, A.</creator><creatorcontrib>Pacheco, D. R. Riveros ; Weiss, A.</creatorcontrib><description>Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chinburg class $\Omega _m$ has shown that the stable isomorphism class of $E$ is determined by the data$\Delta S,\boldsymbol {\mu }, \Omega _m,$ and a special character $\varepsilon $ of $H^2(G,{\rm Hom}(\Delta S,\boldsymbol {\mu } )).$ This paper explains how to build a $G$-module $M$ from this data that is stably isomorphic to $E\oplus {\mathbb Z} G^n,$ for some integer $n.$</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdv100</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2016-04, Vol.48 (2), p.251-259</ispartof><rights>2016 London Mathematical Society 2016</rights><rights>2016 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2641-681128e78a514296f3c65c637bcabeb873446b577840d0a8396e8547fbe20b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbdv100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbdv100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Pacheco, D. R. Riveros</creatorcontrib><creatorcontrib>Weiss, A.</creatorcontrib><title>Galois structure of S-units</title><title>The Bulletin of the London Mathematical Society</title><description>Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chinburg class $\Omega _m$ has shown that the stable isomorphism class of $E$ is determined by the data$\Delta S,\boldsymbol {\mu }, \Omega _m,$ and a special character $\varepsilon $ of $H^2(G,{\rm Hom}(\Delta S,\boldsymbol {\mu } )).$ This paper explains how to build a $G$-module $M$ from this data that is stably isomorphic to $E\oplus {\mathbb Z} G^n,$ for some integer $n.$</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9jzFPwzAUhC0EEqEwMbJkYkFu37Md2xmhglIpiKEwW7brSEEpqewE1H9PqjB3uuW7O32E3CLMEZEtXLtLC7f9QYAzkqGQJWXI4JxkAExQCSW_JFcpfQEgB4UZuVvZtmtSnvo4-H6IIe_qfEOH76ZP1-Sitm0KN_85I58vzx_LV1q9r9bLx4p6JgVSqcdrHZS2BQpWypp7WXjJlfPWBacVF0K6QiktYAtW81IGXQhVu8DAlYzPyMO062OXUgy12cdmZ-PBIJijlzl6mclrpHGif5s2HE6h5ql62wArcOzcT51u2J8c_wP_olxN</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Pacheco, D. R. Riveros</creator><creator>Weiss, A.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160401</creationdate><title>Galois structure of S-units</title><author>Pacheco, D. R. Riveros ; Weiss, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2641-681128e78a514296f3c65c637bcabeb873446b577840d0a8396e8547fbe20b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco, D. R. Riveros</creatorcontrib><creatorcontrib>Weiss, A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pacheco, D. R. Riveros</au><au>Weiss, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galois structure of S-units</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>48</volume><issue>2</issue><spage>251</spage><epage>259</epage><pages>251-259</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chinburg class $\Omega _m$ has shown that the stable isomorphism class of $E$ is determined by the data$\Delta S,\boldsymbol {\mu }, \Omega _m,$ and a special character $\varepsilon $ of $H^2(G,{\rm Hom}(\Delta S,\boldsymbol {\mu } )).$ This paper explains how to build a $G$-module $M$ from this data that is stably isomorphic to $E\oplus {\mathbb Z} G^n,$ for some integer $n.$</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdv100</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2016-04, Vol.48 (2), p.251-259
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bdv100
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Galois structure of S-units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galois%20structure%20of%20S-units&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Pacheco,%20D.%20R.%20Riveros&rft.date=2016-04-01&rft.volume=48&rft.issue=2&rft.spage=251&rft.epage=259&rft.pages=251-259&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdv100&rft_dat=%3Coup_cross%3E10.1112/blms/bdv100%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1112/blms/bdv100&rfr_iscdi=true