Galois structure of S-units
Abstract Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chi...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2016-04, Vol.48 (2), p.251-259 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $K/k$ be a finite Galois extension of number fields with Galois group $G,$$S$ a large$G$-stable set of primes of $K,$ and $E$ (respectively, $\boldsymbol {\mu } )$ the $G$-module of $S$-units of $K$ (respectively, roots of unity). Previous work using the Tate sequence of $E$ and the Chinburg class $\Omega _m$ has shown that the stable isomorphism class of $E$ is determined by the data$\Delta S,\boldsymbol {\mu }, \Omega _m,$ and a special character $\varepsilon $ of $H^2(G,{\rm Hom}(\Delta S,\boldsymbol {\mu } )).$ This paper explains how to build a $G$-module $M$ from this data that is stably isomorphic to $E\oplus {\mathbb Z} G^n,$ for some integer $n.$ |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdv100 |