A note on the Northcott property and undecidability

Abstract We uncover a natural relationship between the Northcott property for sets of algebraic numbers and the Julia Robinson number associated to sets of algebraic integers. This implies, in particular, that any subring of a ring of totally real integers having the Northcott property has undecidab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2016-02, Vol.48 (1), p.58-62
Hauptverfasser: Vidaux, Xavier, Videla, Carlos R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We uncover a natural relationship between the Northcott property for sets of algebraic numbers and the Julia Robinson number associated to sets of algebraic integers. This implies, in particular, that any subring of a ring of totally real integers having the Northcott property has undecidable first-order theory. Combining this theorem with previous results by the second author, we prove that the compositum of all totally real abelian extensions of $\mathbb {Q}$ of bounded degree $d$ has undecidable first-order theory.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdv089