Radó–Kneser–Choquet theorem
We present a new approach to the celebrated theorem of Radó–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant b...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2014-12, Vol.46 (6), p.1283-1291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new approach to the celebrated theorem of Radó–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so‐called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p‐harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC‐Theorem for the isotropic p‐harmonic deformations. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdu084 |