Radó–Kneser–Choquet theorem

We present a new approach to the celebrated theorem of Radó–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2014-12, Vol.46 (6), p.1283-1291
Hauptverfasser: Iwaniec, Tadeusz, Onninen, Jani
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new approach to the celebrated theorem of Radó–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so‐called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p‐harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC‐Theorem for the isotropic p‐harmonic deformations.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdu084