Infinitesimal rigidity for non‐Euclidean bar‐joint frameworks
The minimal infinitesimal rigidity of bar‐joint frameworks in the non‐Euclidean spaces (R2,∥·∥q), for 1⩽q⩽∞,q≠2, is characterized in terms of (2,2)‐tight graphs. Specifically, a generically placed bar‐joint framework (G,p) in the plane is minimally infinitesimally rigid with respect to a non‐Euclide...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2014-08, Vol.46 (4), p.685-697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The minimal infinitesimal rigidity of bar‐joint frameworks in the non‐Euclidean spaces (R2,∥·∥q), for 1⩽q⩽∞,q≠2, is characterized in terms of (2,2)‐tight graphs. Specifically, a generically placed bar‐joint framework (G,p) in the plane is minimally infinitesimally rigid with respect to a non‐Euclidean ℓq norm if and only if the underlying graph G=(V,E) contains 2|V|‐2 edges and every subgraph H=(V(H),E(H)) contains at most 2|V(H)|‐2 edges. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdu017 |