Infinitesimal rigidity for non‐Euclidean bar‐joint frameworks

The minimal infinitesimal rigidity of bar‐joint frameworks in the non‐Euclidean spaces (R2,∥·∥q), for 1⩽q⩽∞,q≠2, is characterized in terms of (2,2)‐tight graphs. Specifically, a generically placed bar‐joint framework (G,p) in the plane is minimally infinitesimally rigid with respect to a non‐Euclide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2014-08, Vol.46 (4), p.685-697
Hauptverfasser: Kitson, D., Power, S. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimal infinitesimal rigidity of bar‐joint frameworks in the non‐Euclidean spaces (R2,∥·∥q), for 1⩽q⩽∞,q≠2, is characterized in terms of (2,2)‐tight graphs. Specifically, a generically placed bar‐joint framework (G,p) in the plane is minimally infinitesimally rigid with respect to a non‐Euclidean ℓq norm if and only if the underlying graph G=(V,E) contains 2|V|‐2 edges and every subgraph H=(V(H),E(H)) contains at most 2|V(H)|‐2 edges.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdu017