Monodromy for systems of vector bundles and multiplicative preprojective algebras

We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2013-04, Vol.45 (2), p.309-317
1. Verfasser: Crawley‐Boevey, William
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 2
container_start_page 309
container_title The Bulletin of the London Mathematical Society
container_volume 45
creator Crawley‐Boevey, William
description We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations of a multiplicative preprojective algebra. As a corollary, we prove that the multiplicative preprojective algebra associated to a Dynkin quiver is isomorphic to the usual preprojective algebra.
doi_str_mv 10.1112/blms/bds089
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bds089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3129-638caa147b3f042ade97e27c4f9fa2cb7eaa15428335b516c3f0e893f536e9523</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI6u_APZS528pF9Z6qCjMIOIui5J-iId0qYknZH-e1vGtavHffdwF4eQW2D3AMBX2rVxpevISnlGFpDmMuHA2TlZMMbTJGdSXJKrGPeMgWAFLMj7zne-Dr4dqfWBxjEO2EbqLT2iGaaPPnS1w0hVV9P24Iamd41RQ3NE2gfsg99P3JyU-0YdVLwmF1a5iDd_d0m-np8-1y_J9m3zun7YJkYAl0kuSqMUpIUWlqVc1SgL5IVJrbSKG13g1GYpL4XIdAa5mTAspbCZyFFmXCzJ3WnXBB9jQFv1oWlVGCtg1Wyjmm1UJxsTDSf6p3E4_odWj9vdBxOTql_M_2X_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monodromy for systems of vector bundles and multiplicative preprojective algebras</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Crawley‐Boevey, William</creator><creatorcontrib>Crawley‐Boevey, William</creatorcontrib><description>We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations of a multiplicative preprojective algebra. As a corollary, we prove that the multiplicative preprojective algebra associated to a Dynkin quiver is isomorphic to the usual preprojective algebra.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bds089</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2013-04, Vol.45 (2), p.309-317</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3129-638caa147b3f042ade97e27c4f9fa2cb7eaa15428335b516c3f0e893f536e9523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbds089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbds089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Crawley‐Boevey, William</creatorcontrib><title>Monodromy for systems of vector bundles and multiplicative preprojective algebras</title><title>The Bulletin of the London Mathematical Society</title><description>We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations of a multiplicative preprojective algebra. As a corollary, we prove that the multiplicative preprojective algebra associated to a Dynkin quiver is isomorphic to the usual preprojective algebra.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI6u_APZS528pF9Z6qCjMIOIui5J-iId0qYknZH-e1vGtavHffdwF4eQW2D3AMBX2rVxpevISnlGFpDmMuHA2TlZMMbTJGdSXJKrGPeMgWAFLMj7zne-Dr4dqfWBxjEO2EbqLT2iGaaPPnS1w0hVV9P24Iamd41RQ3NE2gfsg99P3JyU-0YdVLwmF1a5iDd_d0m-np8-1y_J9m3zun7YJkYAl0kuSqMUpIUWlqVc1SgL5IVJrbSKG13g1GYpL4XIdAa5mTAspbCZyFFmXCzJ3WnXBB9jQFv1oWlVGCtg1Wyjmm1UJxsTDSf6p3E4_odWj9vdBxOTql_M_2X_</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Crawley‐Boevey, William</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201304</creationdate><title>Monodromy for systems of vector bundles and multiplicative preprojective algebras</title><author>Crawley‐Boevey, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3129-638caa147b3f042ade97e27c4f9fa2cb7eaa15428335b516c3f0e893f536e9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crawley‐Boevey, William</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crawley‐Boevey, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodromy for systems of vector bundles and multiplicative preprojective algebras</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2013-04</date><risdate>2013</risdate><volume>45</volume><issue>2</issue><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations of a multiplicative preprojective algebra. As a corollary, we prove that the multiplicative preprojective algebra associated to a Dynkin quiver is isomorphic to the usual preprojective algebra.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bds089</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2013-04, Vol.45 (2), p.309-317
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bds089
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Monodromy for systems of vector bundles and multiplicative preprojective algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodromy%20for%20systems%20of%20vector%20bundles%20and%20multiplicative%20preprojective%20algebras&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Crawley%E2%80%90Boevey,%20William&rft.date=2013-04&rft.volume=45&rft.issue=2&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bds089&rft_dat=%3Cwiley_cross%3EBLMS0309%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true