Monodromy for systems of vector bundles and multiplicative preprojective algebras
We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2013-04, Vol.45 (2), p.309-317 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study systems involving vector bundles and logarithmic connections on Riemann surfaces and linear algebra data linking their residues. This generalizes representations of deformed preprojective algebras. Our main result is the existence of a monodromy functor from such systems to representations of a multiplicative preprojective algebra. As a corollary, we prove that the multiplicative preprojective algebra associated to a Dynkin quiver is isomorphic to the usual preprojective algebra. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bds089 |