Non‐exact integral functors
We give a natural notion of (non‐exact) integral functor from the derived category of perfect complexes on a k‐scheme X to the derived category of bounded and coherent complexes on another k‐scheme Y in the context of k‐linear and graded categories. In this broader sense, we prove that every k‐linea...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2013-04, Vol.45 (2), p.268-282 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a natural notion of (non‐exact) integral functor from the derived category of perfect complexes on a k‐scheme X to the derived category of bounded and coherent complexes on another k‐scheme Y in the context of k‐linear and graded categories. In this broader sense, we prove that every k‐linear and graded functor is integral. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bds086 |