Non‐exact integral functors

We give a natural notion of (non‐exact) integral functor from the derived category of perfect complexes on a k‐scheme X to the derived category of bounded and coherent complexes on another k‐scheme Y in the context of k‐linear and graded categories. In this broader sense, we prove that every k‐linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2013-04, Vol.45 (2), p.268-282
1. Verfasser: de Salas, Fernando Sancho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a natural notion of (non‐exact) integral functor from the derived category of perfect complexes on a k‐scheme X to the derived category of bounded and coherent complexes on another k‐scheme Y in the context of k‐linear and graded categories. In this broader sense, we prove that every k‐linear and graded functor is integral.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bds086