On trace and Hilbert–Schmidt norm estimates
Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2012-08, Vol.44 (4), p.661-674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 4 |
container_start_page | 661 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 44 |
creator | BelHadjAli, H. BenAmor, A. Brasche, J. |
description | Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect to the norm ‖·‖p in the Schatten–von Neumann class of order p, p=1, 2. In particular, we derive a condition that is necessary and sufficient in order that
‖(Hβ + 1)−1 − R∞‖1⩽ c/β∀β > 0
for some finite constant c, and give examples where this criterion is satisfied. |
doi_str_mv | 10.1112/blms/bdr131 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bdr131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2751-ed08ca65e6fc95dc95a39e48270c0e6df6fdaec6eb4e08faf82707e680374ebb3</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoWEdX_kD3Eue9pE3bpQ7qCJVZjK5Dmrxgpe1IUpDZ-Q_-oV8yHeraxeMu3uFyD2PXCLeIKJZN18dl4wJKPGEJZqriAgWcsgRAZFxBJc_ZRYwfACihwITxzZCOwVhKzeDSdds1FMbf75-tfe9bN6bDLvQpxbHtzUjxkp1500W6-ssFe3t8eF2teb15el7d1dyKIkdODkprVE7K2yp30xlZUVaKAiyQcl55Z8gqajKC0ht__BSkSpBFRk0jF-xm7rVhF2Mgrz_DtCDsNYI-muqjqZ5NJxpn-qvtaP8fqu_rly0ohfIAKjVZJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On trace and Hilbert–Schmidt norm estimates</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>BelHadjAli, H. ; BenAmor, A. ; Brasche, J.</creator><creatorcontrib>BelHadjAli, H. ; BenAmor, A. ; Brasche, J.</creatorcontrib><description>Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect to the norm ‖·‖p in the Schatten–von Neumann class of order p, p=1, 2. In particular, we derive a condition that is necessary and sufficient in order that
‖(Hβ + 1)−1 − R∞‖1⩽ c/β∀β > 0
for some finite constant c, and give examples where this criterion is satisfied.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdr131</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-08, Vol.44 (4), p.661-674</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2751-ed08ca65e6fc95dc95a39e48270c0e6df6fdaec6eb4e08faf82707e680374ebb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbdr131$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbdr131$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>BelHadjAli, H.</creatorcontrib><creatorcontrib>BenAmor, A.</creatorcontrib><creatorcontrib>Brasche, J.</creatorcontrib><title>On trace and Hilbert–Schmidt norm estimates</title><title>The Bulletin of the London Mathematical Society</title><description>Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect to the norm ‖·‖p in the Schatten–von Neumann class of order p, p=1, 2. In particular, we derive a condition that is necessary and sufficient in order that
‖(Hβ + 1)−1 − R∞‖1⩽ c/β∀β > 0
for some finite constant c, and give examples where this criterion is satisfied.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoWEdX_kD3Eue9pE3bpQ7qCJVZjK5Dmrxgpe1IUpDZ-Q_-oV8yHeraxeMu3uFyD2PXCLeIKJZN18dl4wJKPGEJZqriAgWcsgRAZFxBJc_ZRYwfACihwITxzZCOwVhKzeDSdds1FMbf75-tfe9bN6bDLvQpxbHtzUjxkp1500W6-ssFe3t8eF2teb15el7d1dyKIkdODkprVE7K2yp30xlZUVaKAiyQcl55Z8gqajKC0ht__BSkSpBFRk0jF-xm7rVhF2Mgrz_DtCDsNYI-muqjqZ5NJxpn-qvtaP8fqu_rly0ohfIAKjVZJA</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>BelHadjAli, H.</creator><creator>BenAmor, A.</creator><creator>Brasche, J.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201208</creationdate><title>On trace and Hilbert–Schmidt norm estimates</title><author>BelHadjAli, H. ; BenAmor, A. ; Brasche, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2751-ed08ca65e6fc95dc95a39e48270c0e6df6fdaec6eb4e08faf82707e680374ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BelHadjAli, H.</creatorcontrib><creatorcontrib>BenAmor, A.</creatorcontrib><creatorcontrib>Brasche, J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BelHadjAli, H.</au><au>BenAmor, A.</au><au>Brasche, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On trace and Hilbert–Schmidt norm estimates</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-08</date><risdate>2012</risdate><volume>44</volume><issue>4</issue><spage>661</spage><epage>674</epage><pages>661-674</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect to the norm ‖·‖p in the Schatten–von Neumann class of order p, p=1, 2. In particular, we derive a condition that is necessary and sufficient in order that
‖(Hβ + 1)−1 − R∞‖1⩽ c/β∀β > 0
for some finite constant c, and give examples where this criterion is satisfied.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdr131</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2012-08, Vol.44 (4), p.661-674 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_bdr131 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
title | On trace and Hilbert–Schmidt norm estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20trace%20and%20Hilbert%E2%80%93Schmidt%20norm%20estimates&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=BelHadjAli,%20H.&rft.date=2012-08&rft.volume=44&rft.issue=4&rft.spage=661&rft.epage=674&rft.pages=661-674&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdr131&rft_dat=%3Cwiley_cross%3EBLMS0661%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |