On trace and Hilbert–Schmidt norm estimates
Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2012-08, Vol.44 (4), p.661-674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ℰ and 풫 be nonnegative quadratic forms in the Hilbert space ℋ. Suppose that, for every β ⩾ 0, the form ℰ+β풫 is densely defined and closed. Let Hβ be the self‐adjoint operator associated with ℰ+β 풫 and R∞ := lim β→∞ (Hβ+1)−1. We give estimates for the distance between (Hβ+1)−1 and R∞ with respect to the norm ‖·‖p in the Schatten–von Neumann class of order p, p=1, 2. In particular, we derive a condition that is necessary and sufficient in order that
‖(Hβ + 1)−1 − R∞‖1⩽ c/β∀β > 0
for some finite constant c, and give examples where this criterion is satisfied. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdr131 |